Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2723, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581185

RESUMO

The coordination between cell proliferation and cell polarity is crucial to orient the asymmetric cell divisions to generate cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Divisão Celular Assimétrica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/fisiologia , Ciclina A/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Mitose , Fuso Acromático/metabolismo
2.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254258

RESUMO

Spatiotemporal mechanisms generating neural diversity are fundamental for understanding neural processes. Here, we investigated how neural diversity arises from neurons coming from identical progenitors. In the dorsal thorax of Drosophila, rows of mechanosensory organs originate from the division of sensory organ progenitor (SOPs). We show that in each row of the notum, an anteromedial located central SOP divides first, then neighbouring SOPs divide, and so on. This centrifugal wave of mitoses depends on cell-cell inhibitory interactions mediated by SOP cytoplasmic protrusions and Scabrous, a secreted protein interacting with the Delta/Notch complex. Furthermore, when this mitotic wave was reduced, axonal growth was more synchronous, axonal terminals had a complex branching pattern and fly behaviour was impaired. We show that the temporal order of progenitor divisions influences the birth order of sensory neurons, axon branching and impact on grooming behaviour. These data support the idea that developmental timing controls axon wiring neural diversity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Axônios , Proteínas de Drosophila/genética , Neurogênese/fisiologia , Crescimento Neuronal , Células Receptoras Sensoriais
3.
Genetics ; 212(3): 773-788, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31073020

RESUMO

Cell diversity in multicellular organisms relies on coordination between cell proliferation and the acquisition of cell identity. The equilibrium between these two processes is essential to assure the correct number of determined cells at a given time at a given place. Using genetic approaches and correlative microscopy, we show that Tramtrack-69 (Ttk69, a Broad-complex, Tramtrack and Bric-à-brac - Zinc Finger (BTB-ZF) transcription factor ortholog of the human promyelocytic leukemia zinc finger factor) plays an essential role in controlling this balance. In the Drosophila bristle cell lineage, which produces the external sensory organs composed by a neuron and accessory cells, we show that ttk69 loss-of-function leads to supplementary neural-type cells at the expense of accessory cells. Our data indicate that Ttk69 (1) promotes cell cycle exit of newborn terminal cells by downregulating CycE, the principal cyclin involved in S-phase entry, and (2) regulates cell-fate acquisition and terminal differentiation, by downregulating the expression of hamlet and upregulating that of Suppressor of Hairless, two transcription factors involved in neural-fate acquisition and accessory cell differentiation, respectively. Thus, Ttk69 plays a central role in shaping neural cell lineages by integrating molecular mechanisms that regulate progenitor cell cycle exit and cell-fate commitment.


Assuntos
Linhagem da Célula , Proliferação de Células , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas Repressoras/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Mutação com Perda de Função , Células-Tronco Neurais/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Development ; 143(16): 3024-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27471258

RESUMO

During Notch (N)-mediated binary cell fate decisions, cells adopt two different fates according to the levels of N pathway activation: an Noff-dependent or an Non-dependent fate. How cells maintain these N activity levels over time remains largely unknown. We address this question in the cell lineage that gives rise to the Drosophila mechanosensory organs. In this lineage a primary precursor cell undergoes a stereotyped sequence of oriented asymmetric cell divisions and transits through two neural precursor states before acquiring a neuron identity. Using a combination of genetic and cell biology strategies, we show that Escargot and Scratch, two transcription factors belonging to the Snail superfamily, maintain Noff neural commitment by directly blocking the transcription of N target genes. We propose that Snail factors act by displacing proneural transcription activators from DNA binding sites. As such, Snail factors maintain the Noff state in neural precursor cells by buffering any ectopic variation in the level of N activity. Since Escargot and Scratch orthologs are present in other precursor cells, our findings are fundamental for understanding precursor cell fate acquisition in other systems.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptores Notch/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/genética
5.
Development ; 143(7): 1160-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893341

RESUMO

Developmentally regulated cell cycle arrest is a fundamental feature of neurogenesis, whose significance is poorly understood. During Drosophila sensory organ (SO) development, primary progenitor (pI) cells arrest in G2 phase for precisely defined periods. Upon re-entering the cell cycle in response to developmental signals, these G2-arrested precursor cells divide and generate specialized neuronal and non-neuronal cells. To study how G2 phase arrest affects SO lineage specification, we forced pI cells to divide prematurely. This produced SOs with normal neuronal lineages but supernumerary non-neuronal cell types because prematurely dividing pI cells generate a secondary pI cell that produces a complete SO and an external precursor cell that undergoes amplification divisions. pI cells are therefore able to undergo self-renewal before transit to a terminal mode of division. Regulation of G2 phase arrest thus serves a dual role in SO development: preventing progenitor self-renewal and synchronizing cell division with developmental signals. Cell cycle arrest in G2 phase temporally coordinates the precursor cell proliferation potential with terminal cell fate determination to ensure formation of organs with a normal set of sensory cells.


Assuntos
Autorrenovação Celular/fisiologia , Drosophila/embriologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Neurogênese/fisiologia , Células-Tronco/citologia , Animais , Proteína Quinase CDC2/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Drosophila
6.
Genetics ; 199(4): 1201-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680814

RESUMO

Serine-/arginine-rich (SR) proteins are RNA-binding proteins that are primarily involved in alternative splicing. Expression of some SR proteins is frequently upregulated in tumors, and previous reports have demonstrated that these proteins can directly participate in cell transformation. Identifying factors that can rescue the effects of SR overexpression in vivo is, therefore, of potential therapeutic interest. Here, we analyzed phenotypes induced by overexpression of the SR protein B52 during Drosophila development and identified several proteins that can rescue these phenotypes. Using the mechanosensory bristle lineage as a developmental model, we show that B52 expression level influences cell growth, but not differentiation, in this lineage. In particular, B52 overexpression increases cell growth, upregulates myc transcription, and gives rise to flies lacking thoracic bristles. Using a genetic screen, we identified several suppressors of the phenotypes induced by overexpression of B52 in vivo in two different organs. We show that upregulation of brain tumor (brat), a tumor suppressor and post-transcriptional repressor of myc, and downregulation of lilliputian (lilli), a subunit of the superelongation complex involved in transcription elongation, efficiently rescue the phenotypes induced by B52 overexpression. Our results demonstrate a role of this SR protein in cell growth and identify candidate proteins that may overcome the effects of SR protein overexpression in mammals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Diferenciação Celular , Processos de Crescimento Celular , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Mecanorreceptores/citologia , Mecanorreceptores/metabolismo , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Processamento de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Development ; 139(3): 547-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22223681

RESUMO

Endocycles, which are characterised by repeated rounds of DNA replication without intervening mitosis, are involved in developmental processes associated with an increase in metabolic cell activity and are part of terminal differentiation. Endocycles are currently viewed as a restriction of the canonical cell cycle. As such, mitotic cyclins have been omitted from the endocycle mechanism and their role in this process has not been specifically analysed. In order to study such a role, we focused on CycA, which has been described to function exclusively during mitosis in Drosophila. Using developing mechanosensory organs as model system and PCNA::GFP to follow endocycle dynamics, we show that (1) CycA proteins accumulate during the last period of endoreplication, (2) both CycA loss and gain of function induce changes in endoreplication dynamics and reduce the number of endocycles, and (3) heterochromatin localisation of ORC2, a member of the Pre-RC complex, depends on CycA. These results show for the first time that CycA is involved in endocycle dynamics in Drosophila. As such, CycA controls the final ploidy that cells reached during terminal differentiation. Furthermore, our data suggest that the control of endocycles by CycA involves the subnuclear relocalisation of pre-RC complex members. Our work therefore sheds new light on the mechanism underlying endocycles, implicating a process that involves remodelling of the entire cell cycle network rather than simply a restriction of the canonical cell cycle.


Assuntos
Estruturas Animais/crescimento & desenvolvimento , Ciclina A/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Estruturas Animais/metabolismo , Animais , Diferenciação Celular , Replicação do DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Mecanotransdução Celular , Complexo de Reconhecimento de Origem/metabolismo , Ploidias
8.
PLoS Genet ; 5(8): e1000594, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19662164

RESUMO

Understanding the mechanisms that coordinate cell proliferation, cell cycle arrest, and cell differentiation is essential to address the problem of how "normal" versus pathological developmental processes take place. In the bristle lineage of the adult fly, we have tested the capacity of post-mitotic cells to re-enter the cell cycle in response to the overexpression of cyclin E. We show that only terminal cells in which the identity is independent of Notch pathway undergo extra divisions after CycE overexpression. Our analysis shows that the responsiveness of cells to forced proliferation depends on both Prospero, a fate determinant, and on the level of Notch pathway activity. Our results demonstrate that the terminal quiescent state and differentiation are regulated by two parallel mechanisms acting simultaneously on fate acquisition and cell cycle progression.


Assuntos
Linhagem da Célula , Proliferação de Células , Ciclina E/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Ciclina E/genética , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores Notch/genética , Fatores de Transcrição/genética
9.
PLoS One ; 3(11): e3646, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18985153

RESUMO

We have studied cell sensitivity to Notch pathway signalling throughout the cell cycle. As model system, we used the Drosophila bristle lineage where at each division N plays a crucial role in fate determination. Using in vivo imaging, we followed this lineage and activated the N-pathway at different moments of the secondary precursor cell cycle. We show that cells are more susceptible to respond to N-signalling during the S-phase. Thus, the period of heightened sensitivity coincided with the period of the S-phase. More importantly, modifications of S-phase temporality induced corresponding changes in the period of the cell's reactivity to N-activation. Moreover, S-phase abolition was correlated with a decrease in the expression of tramtrack, a downstream N-target gene. Finally, N cell responsiveness was modified after changes in chromatin packaging. We suggest that high-order chromatin structures associated with the S-phase create favourable conditions that increase the efficiency of the transcriptional machinery with respect to N-target genes.


Assuntos
Linhagem da Célula/genética , Drosophila/genética , Receptores Notch/fisiologia , Fase S/fisiologia , Animais , Animais Geneticamente Modificados , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular Transformada , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Modelos Biológicos , Pupa/citologia , Receptores Notch/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fase S/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Tempo , Transcrição Gênica/fisiologia
10.
Trends Genet ; 21(7): 413-20, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15927300

RESUMO

"Normal" development requires a finely tuned equilibrium between cell differentiation and cell proliferation. Important issues in development include whether the cell cycle controls the cell-fate determination and whether cell identity in turn regulates cell-cycle progression. Although, these issues are of general biological relevance, stereotyped Drosophila neural lineages are particularly suited to address these questions and have provided insights into the links between cell-cycle progression and cell-fate specification.


Assuntos
Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Neurônios/metabolismo , Animais , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Citocinese , Modelos Biológicos , Fase S
11.
Development ; 132(10): 2287-97, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15829522

RESUMO

In the Drosophila bristle lineage, five differentiated cells arise from a precursor cell after a rapid sequence of asymmetric cell divisions (one every 2 hours). We show that, in mitotic cells, this rapid cadence of cell divisions is associated with cell cycles essentially devoid of the G1-phase. This feature is due to the expression of Cyclin E that precedes each cell division, and the differential expression of the S-transition negative regulator, Dacapo. Thus, apart from endocycles (G/S), which occurred in two out of five terminal cells, two other cell cycles coexist in this lineage: (1) an atypical cell cycle (S/G2/M), in which the S-phase is initiated during the preceding telophase; and (2) a canonical cell cycle (G1/S/G2/M) with a brief G1 phase. These two types of cell cycle result from either the absence or very transient expression of Dap, respectively. Finally, we show that the fate determinant factor, Tramtrack, downregulates Cyclin E expression and is probably involved in the exit of the cells from the cell cycle.


Assuntos
Ciclo Celular/fisiologia , Linhagem da Célula/fisiologia , Ciclina E/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mecanorreceptores/embriologia , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
12.
Proc Natl Acad Sci U S A ; 99(16): 10593-8, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12149458

RESUMO

The Suppressor of forked [Su(f)] protein is the Drosophila homologue of CstF-77, a subunit of human cleavage stimulation factor (CstF) that is required for the first step of the mRNA 3' end processing reaction in vitro. We have addressed directly the role of su(f) in the mRNA 3' end processing reaction in vivo. We show that su(f) is required for the cleavage of pre-mRNA during mRNA 3' end formation. Analysis of the functional complementation between Su(f) and CstF-77 shows that most of the Drosophila protein (85%) can be exchanged for the human protein to produce chimeric CstF-77/Su(f) proteins that rescue lethality and cleavage defect during mRNA 3' end formation in su(f) mutants. Interestingly, we show that a domain in human CstF-77 is limiting for the rescue and that this domain is not able to reproduce protein interactions with the CstF subunits of Drosophila. We also show that chimeric CstF-77/Su(f) proteins that rescue lethality of su(f) mutants cannot restore utilization of a regulated poly(A) site in Drosophila. Taken together, these results demonstrate that CstF-77 and Su(f) have the same function in mRNA 3' end formation in vivo, but that these two proteins are not interchangeable for regulation of poly(A) site utilization.


Assuntos
Proteínas de Drosophila , Proteínas de Insetos/fisiologia , Proteínas Nucleares , Precursores de RNA , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , DNA Complementar , Drosophila melanogaster , Humanos , Proteínas de Insetos/genética , Dados de Sequência Molecular , Mutagênese , Poli A , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de Poliadenilação e Clivagem de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...